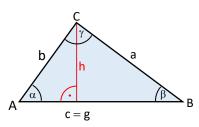


# Hessisches Ministerium für Kultus, Bildung und Chancen

#### **Abschlussarbeit Mathematik**


# Formelsammlung Hauptschule

# Ebene Figuren (Fläche A und Umfang u)

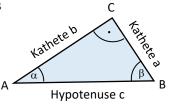
#### **Dreieck**

$$A=\frac{g\cdot h}{2}$$

$$u = a + b + c$$

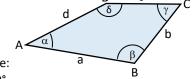


Innenwinkelsumme:  $\alpha + \beta + \gamma = 180^{\circ}$ spitzwinkliges Dreieck:  $\alpha$  < 90° und  $\beta$  < 90° und  $\gamma$  < 90° rechtwinkliges Dreieck:  $\alpha = 90^{\circ}$  oder  $\beta = 90^{\circ}$  oder  $\gamma = 90^{\circ}$ 


stumpfwinkliges Dreieck:  $\alpha > 90^{\circ}$  oder  $\beta > 90^{\circ}$  oder  $\gamma > 90^{\circ}$ gleichschenkliges Dreieck: a = b,  $\alpha = \beta$  oder b = c,  $\beta = \gamma$ 

gleichseitiges Dreieck: a = b = c;  $\alpha = \beta = \gamma = 60^{\circ}$ 

# Satz des Pythagoras


Im rechtwinkligen Dreieck ABC mit  $\gamma = 90^{\circ}$  gilt:



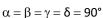


#### Viereck

u = a + b + c + d



**oder** a = c,  $\alpha = \gamma$ 

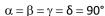

Innenwinkelsumme:  $\alpha + \beta + \gamma + \delta = 360^{\circ}$ 

$$a_z + p_z = c_z$$

# **Ouadrat**

$$A = a^2$$
 oder  $A = a \cdot a$ 

 $u = 4 \cdot a$ 

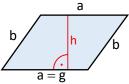



Alle Seiten sind gleich lang.

#### Rechteck

$$A = a \cdot b$$

$$u = 2 \cdot a + 2 \cdot b$$




Gegenüberliegende Seiten sind gleich lang.

# **Parallelogramm**

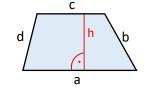
 $A = g \cdot h$ 

 $u = 2 \cdot a + 2 \cdot b$ 



а

а


Gegenüberliegende Winkel sind gleich groß. Benachbarte Winkel ergänzen sich zu 180°.

Gegenüberliegende Seiten sind parallel und gleich lang.

### Trapez

$$A = \frac{a+c}{2} \cdot h$$

u = a + b + c + d



b

Mindestens zwei gegenüberliegende Seiten sind parallel zueinander (hier a und c).

#### Kreis (Radius r, Durchmesser d, Mittelpunkt M)

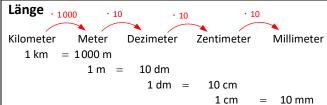
$$A = \pi \cdot r^2 \quad \text{oder} \quad A = \frac{\pi}{4} \cdot d^2$$

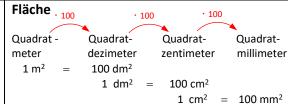
 $u = 2 \cdot \pi \cdot r$  oder  $u = \pi \cdot d$ 

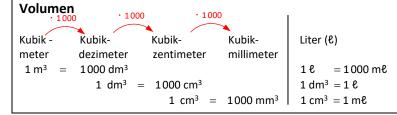
 $d = 2 \cdot r$ 

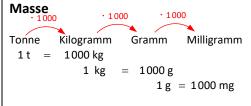
#### Winkel an sich schneidenden Geraden

Nebenwinkel ergänzen sich zu 180°.


$$\alpha + \beta = \beta + \gamma = 180^{\circ}$$


$$\alpha + \delta = \delta + \gamma = 180^{\circ}$$


Scheitelwinkel sind gleich groß.


# $\alpha = \gamma$ und $\beta = \delta$

#### Maßeinheiten











# Hessisches Ministerium für Kultus, Bildung und Chancen

## Abschlussarbeit Mathematik

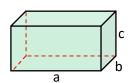
# Formelsammlung Hauptschule

# Körper (Volumen V, Oberfläche O, Grundfläche G, Mantelfläche M, Körperhöhe h,

#### Würfel

$$V = a^3$$
 oder  $V = a \cdot a \cdot a$ 





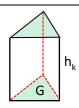

Ein Würfel hat 6 quadratische deckungsgleiche Seitenflächen.

#### **Quader**

 $V = a \cdot b \cdot c$ 

$$O=2\cdot a\cdot b+2\cdot b\cdot c+2\cdot a\cdot c$$




Gegenüberliegende Rechtecke sind deckungsgleich.

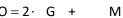
#### Prisma (Umfang u)

$$V = G \cdot h_{k}$$

$$O = 2 \cdot G + \underbrace{u \cdot h_k}_{}$$

$$O = 2 \cdot G + M$$




Die Grundflächen G sind Vielecke. Sie sind deckungsgleich und parallel. Die Mantelfläche M ist ein Rechteck.

#### **Zylinder** (Radius r, Durchmesser d)

$$V = G \cdot h_k$$
 oder  $V = \pi \cdot r^2 \cdot h_k$ 

$$O = 2 \cdot \underbrace{\pi \cdot r^2}_{} + \underbrace{2 \cdot \pi \cdot r \cdot h_k}_{}$$

$$O = 2 \cdot G + M$$





Die Grundflächen G sind deckungsgleiche, parallele Kreisflächen. Die Mantelfläche M ist ein Rechteck.

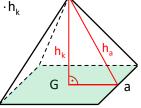
#### Kegel (Radius r, Durchmesser d, Seitenlinie s)

$$V = \frac{1}{3} \cdot G \cdot h_k \ oder \ V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h_k$$

$$O = \underbrace{\pi \cdot r^2}_{} + \underbrace{\pi \cdot r \cdot s}_{}$$

$$O = G + M$$



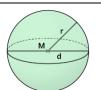



Die Grundfläche G ist ein Kreis. Die Mantelfläche M ist ein Kreisausschnitt.

#### Quadratische Pyramide (Höhe einer Seitenfläche ha)

$$V = \frac{1}{3} \cdot G \cdot h_k$$
 oder  $V = \frac{1}{3} \cdot a^2 \cdot h_k$ 

$$O = a^2 + 4 \cdot \frac{a \cdot h_a}{2}$$




Bei einer quadratischen Pyramide ist die Grundfläche G ein Quadrat. Die Mantelfläche M besteht aus Dreiecken.

# Kugel (Radius r)

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

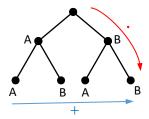
$$O = 4 \cdot \pi \cdot r^2$$



#### **Masse** (Masse m, Dichte ρ (rho), Volumen V)

Masse = Dichte · Volumen

$$m = \rho \cdot V$$


#### Wahrscheinlichkeit

**Ergebnis:** Ausgang eines Zufallsexperimentes

Ereignis: gewünschtes Ergebnis oder gewünschte Ergebnisse eines Zufallsexperimentes

## **Zweistufiges Zufallsexperiment**

Baumdiagramm



1. Pfadregel (Produktregel):

Die Wahrscheinlichkeit für ein Ergebnis erhält man, indem man die Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm multipliziert.

#### Laplace-Wahrscheinlichkeit

$$P(Ereignis E) = \frac{Anzahl der für E günstigen Ergebnisse}{Anzahl aller möglichen Ergebnisse}$$

P(Ereignis E) + P(Gegenereignis zu E) = 1

#### 2. Pfadregel (Summenregel):

Gibt es für ein Ereignis E mehrere günstige Ergebnisse, werden die Wahrscheinlichkeiten der einzelnen Ergebnisse addiert.

#### **Prozent- und Zinsrechnung**

#### Prozentwert Pw

### Prozentsatz p

#### **Grundwert G**

$$G = \frac{P_{W} \cdot 100}{100}$$

Jahreszinsen Z  $Z = \frac{K \cdot p}{100}$ 

 $P_w {=} \; \frac{G \cdot p}{}$ 

$$Z = \frac{K \cdot p}{100}$$

K: Kapital p: Zinssatz

# Mittelwert (arithmetisches Mittel, Durchschnitt)

$$\overline{X} = \frac{\text{Summe aller Werte}}{\text{Anzahl aller Werte}} = \frac{X_1 + X_2 + \dots + X_n}{n}$$