
Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 1 von 7

Vorbemerkung

Ab dem Jahr 2026 wird im hessischen Landesabitur eine Pflichtaufgabe zum Halbjahresthema
'Algorithmik und objektorientierte Programmierung' in den Programmiersprachen Python und Java
angeboten. Die Auswahl der Programmiersprache erfolgt im Rahmen der durch Erlass vorgegebenen
Möglichkeiten durch die Fachkonferenz. Die Programmiersprache dient als Werkzeug und steht nicht im
Mittelpunkt des Unterrichts.

Die Umsetzung der Inhalte des KCGOs zu den Halbjahresthemen 'Einführung in die Informatik' und
'Algorithmik und objektorientierte Programmierung' wird im Folgenden erläutert. Dieses Dokument und
die Beispielaufgaben werden auch auf dem hessischen Bildungsserver ggf. aktualisiert und erweitert zu
finden sein.

Bezeichner
In Python verwenden wir die üblichen Namenskonventionen1.

• Klassenbezeichner beginnen mit einem Großbuchstaben und verwenden das CamelCase-Format.

• Module, Methoden und Variablen beginnen mit einem Kleinbuchstaben, wobei einzelne Wörter
durch Unterstriche getrennt werden.

from knoten import Knoten

class BinBaum:

 def ip_von_domain(self):
 pass

Hinweis: from knoten import Knoten importiert aus dem Modul knoten die Klasse Knoten. Auf
den Import ganzer Module soll verzichtet werden.
Bei Quellcode in Aufgaben des Landesabiturs werden wir in den meisten Fällen import Statements nicht
explizit angeben.

Datenkapselung, Sichtbarkeit und get-/set-Methoden
Datenkapselung ist ein zentrales Konzept der objektorientierten Programmierung, auch in Python. Die
Sichtbarkeit von Attributen bestimmt, ob auf sie von außerhalb der Klasse zugegriffen werden kann. Wir
verwenden die folgenden Konventionen, um das Geheimnisprinzip zu wahren:

• Private Attribute und Methoden: Präfix '__'

• Geschützte Attribute und Methoden: Präfix '_'

Der Zugriff erfolgt über get- und set-Methoden, während die Nutzung von Properties im Landesabitur
nicht vorgesehen ist.

1 PEP 8 – Style Guide for Python Code

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 2 von 7

Typinformationen

Python verwendet dynamische Typisierung, daher finden keine expliziten Variablendeklarationen statt.
Der Datentyp ergibt sich aus der Initialisierung durch eine Wertzuweisung. Für UML-Diagramme und
Quellcodedarstellungen nutzen wir Typinformationen (type hints) 2. Diese Typinformationen sind in
Python lediglich Hinweise und beeinflussen nicht das Verhalten der Laufzeitumgebung.

In Python können Typannotationen zu einem Fehler führen, wenn sie sich auf Typen beziehen, die zum
Zeitpunkt ihrer Definition noch nicht bekannt sind. Dies ist besonders problematisch bei
selbstreferenzierenden Klassen oder Klassen, die sich gegenseitig referenzieren. In der folgenden
Beispielaufgabe befindet sich die selbstreferenzierende Klasse Knoten, die zwei Attribute vom Typ Knoten
enthält. Die Verwendung von from __future__ import annotations löst dieses Problem, indem alle
Typannotationen als Zeichenketten behandelt werden, die erst zur Laufzeit aufgelöst werden.
Auch dieses import Statement werden wir in Aufgaben des Landesabiturs nicht explizit angeben. Auch in
Lösungen der Schülerinnen und Schüler wird dies nicht verlangt werden.

Beispielaufgabe

Überführen Sie die beiden Klassen in ein UML-Klassendiagramm.

Klasse BinBaum
from knoten import Knoten

class BinBaum:

 def ____init____(self):
 self._wurzel: Knoten = None

 def ip_von_domain(self, domain_name: str) -> str:
 # in Aufgabe 3 zu implementieren

 def ip_erfragen(self, domain_name: str) -> str:
 # hier muss ein übergeordneter DNS-Server angefragt werden
 # die Methode soll als implementiert angenommen werden

Klasse Knoten
from __future__ import annotations

class Knoten:

 def __init__(self, name: str, ip: str):
 self.__name: str = name
 self.__ip: str = ip
 self.__links: Knoten = None
 self.__rechts: Knoten = None

 def get_name(self) -> str:
 return self.__name

 def get_ip(self) -> str:

2 Seit Version 3.6 sind die Typhinweise in Python möglich. Selbst Pythons Gründervater Guido van Rossum
unterstützt das Vorgehen mit dem Type-Checker-Projekt mypy.

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 3 von 7

 return self.__ip

 def get_links(self) -> Knoten:
 return self.__links

 def set_links(self, links: Knoten):
 self.__links = links

 def get_rechts(self) -> Knoten:
 return self.__rechts

 def set_rechts(self, rechts: Knoten):
 self.__rechts = rechts

Lösung:

Typinformationen erleichtern auch die Analyse von Quellcode, da hierdurch die Bedeutung der Variablen
verdeutlicht wird. Wir werden daher im Landesabitur in den Aufgabenstellungen und Lösungen stets
Typinformationen angeben.

Beispielaufgabe:

Analysieren Sie die Methode ausgeben(…) aus dem Material.

Die Methode ausgeben(…) der Klasse Arzneiverwaltung
01 def ausgeben(self, arzneiname: str) -> bool:
02 for arznei in self.__arzneien:
03 if arznei.get_name() == arzneiname:
04 if arznei.get_anzahl() > 0:
05 arznei.ändere_anzahl_um(-1)
06 return True
07 else:
08 return False
09 return False

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 4 von 7

Sortieralgorithmen

Sortieralgorithmen sind in vielen Anwendungen erforderlich. Die Lernenden sollen einfache
Sortieralgorithmen entwickeln und diese beschreiben, darstellen und implementieren. Die vordefinierte
Funktion sort() auf Listen soll dabei nicht verwendet werden. Der Dreieckstausch kann durch die in
Python übliche direkte Vertauschung der Listeninhalte ersetzt werden.

Beispielaufgabe:

Implementieren Sie die Methode sortiere_arzneien() der Klasse Arzneiverwaltung, die die Arzneien
alphabetisch nach Arzneinamen sortiert.
Hinweis: Die Methoden sort() und sorted() für Listen sollen in dieser Aufgabe nicht verwendet werden.

Lösung:

def sortiere_arzneien(self):
 for i in range(len(self.__arzneien) - 1):
 min = i
 for j in range(i + 1, len(self.__arzneien)):
 if (self.__arzneien[j].get_name()
 < self.__arzneien[min].get_name()):
 min = j
 (self.__arzneien[i], self.__arzneien[min]) \
 = (self.__arzneien[min], self.__arzneien[i])

List Comprehensions
In Anbetracht der Lesbarkeit und Verständlichkeit des Codes präferieren wir traditionelle
Schleifenkonstrukte gegenüber List Comprehensions. Letztere, obwohl sie für ihre Kompaktheit und
Eleganz bekannt sind, können bei komplexer oder spezifischer Logik, die Codeverständlichkeit
beeinträchtigen. Daher wird empfohlen, Schleifenkonstrukte direkt zu verwenden, um die Klarheit und
Nachvollziehbarkeit des Codes zu gewährleisten.

Beispiel:

class Person:
 def __init__(self, name: str, alter: str):
 self._name = name
 self._alter = alter

personen = [Person("Ada", 25), Person("Bernd", 30), Person("Charlie", 20)]

Mit List Comprehensions
namen_unter_30 = [person._name for person in personen if person._alter < 30]

Ohne List Comprehensions
namen_unter_30 = []
for person in personen:
 if person._alter < 30:
 namen_unter_30.append(person._name)

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 5 von 7

weiteres Beispiel:

def counting_sort(self):
 anzahl_abstände: int = 7

 #so:
 c: list[int] = [] #c hat so viele Einträge,
 #wie es der maximale Abstand im Gitter ermöglicht +1 (6 + 1).
 for i in range(anzahl_abstände):
 c.append(0)
 #und nicht so:
 c = [0 for i in range(anzahl_abstände)]

 #so:
 b: list[Auto] = [] #Diese Liste wird sortiert aufgebaut
 for i in range(len(self.__verfügbare_autos)):
 b.append(None)
 #und nicht so:
 b = [None for i in range(len(self.__verfügbare_autos))]

 for i in range (len(self.__verfügbare_autos)):
 abstand: int = self.__verfügbare_autos[i].bestimme_abstand()
 c[abstand] = c[abstand] + 1

 for i in range (anzahl_abstände - 1):
 c[i] = c[i] + c[i-1]

 for i in range (len(self.__verfügbare_autos)):
 abstand: int = self.__verfügbare_autos[i].bestimme_abstand()
 b[c[abstand]-1] = self.__verfügbare_autos[i]
 c[abstand] = c[abstand]-1

 self.__verfügbare_autos = b

Slicing
Python bietet slicing als Operation auf Listen an. Slicing ermöglicht es häufig, Algorithmen sehr effizient
zu implementieren, kann dabei aber auch die Lesbarkeit des Quellcodes verringern. Aus diesem Grund
verzichten wir vollständig auf Slicing und gehen wie oben unter List Comprehensions beschrieben vor.
Schülerinnen und Schüler dürfen bei Implementierungen in Abituraufgaben Slicing verwenden.

Beispiel:

class Senso:

 def __init__(self):
 self.__farbfolge: list[Licht] = []
 self.__farbfolge.append(Licht("blau"))
 self.__farbfolge.append(Licht("gelb"))
 self.__farbfolge.append(Licht("rot"))
 self.__farbfolge.append(Licht("gelb"))

Mit Slicing
 def spielen(self):
 for runde in range(len(self.__farbfolge)):
 print("Runde ", runde + 1)
 for licht in self.__farbfolge[:runde+1]:
 licht.aufblinken()

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 6 von 7

Ohne Slicing
 def spielen(self):
 for runde in range(len(self.__farbfolge)):
 print("Runde ", runde + 1)
 for i in range(runde + 1):
 self.__farbfolge[i].aufblinken()

Lesbarkeit von Quellcode
Insgesamt werden wir eine bessere Lesbarkeit des Quellcodes gegenüber dessen Kürze oder Eleganz
vorziehen. Dies gilt insbesondere, wenn ein Quellcode analysiert werden soll.

Es steht Lehrerinnen und Lehrern jedoch hierbei frei, in ihren Kursen den Schwerpunkt anders zu setzen.
Schülerinnen und Schüler sind bei Implementierungen in Abituraufgaben nicht verpflichtet diesen
Grundsatz zu befolgen. Die Priorisierung der Lesbarkeit soll lediglich als Empfehlung dienen, um das
Verständnis und die Nachvollziehbarkeit von Quellcode zu fördern.

Beispiel:

Kurz
 def erstes_element(self) -> Element:
 return self.__feld[0]

Besser lesbar
 def erstes_element(self) -> Element:
 if self.__feld:
 return self.__feld[0]
 else:
 return None

Listen in Python
In Python existiert nicht direkt die Datenstruktur Feld (Array), wie sie in anderen Programmiersprachen
wie Java oder Delphi vorkommt. Stattdessen wird ein List-Objekt verwendet, das Methoden für
grundlegende Operationen bereitstellt. Während in Python ein indexbasierter Zugriff auf List-Objekte
möglich ist, fordert die Vergrößerung eines Feldes nicht das Neuerzeugen und Umkopieren der bereits
vorhandenen Inhalte, wie es in Java nötig ist. Stattdessen werden in Python integrierte Methoden wie
append, pop, … verwendet, um die Inhalte eines Feldes zu manipulieren.

Da die Datenstruktur Feld eine fundamentale in der Informatik ist, soll diese weiterhin auch im Unterricht
mit Python thematisiert werden. Für die Aufgaben im Landesabitur hat dies folgende Konsequenzen:

Soll die Datenstruktur im Mittelpunkt stehen, wie beispielsweise. im Themenfeld der Sortieralgorithmen,
wird in der Regel auf einem gegebenen Feld indexbasiert operiert. Wenn die Datenstruktur Feld hingegen
nur zum Speichern von Inhalten verwendet werden, wird dies in Python mithilfe der zur Verfügung
stehenden Methoden implementiert.

Hinweise und Beispiele zur Einführung von Python im hessischen Landesabitur 2026

Seite 7 von 7

Beispiel:

Feld steht als Datenstruktur nicht im Vordergrund
Die Methoden einfügen() und erstes_löschen() werden mit Hilfe der Methoden append() und pop()
implementiert.

class Element:

 def __init__(self, nachname: str, vorname: str, ist_notfall: bool):
 self.__nachname: str = nachname
 self.__vorname: str = vorname
 self.__ist_notfall: bool = ist_notfall

 def get_nachname(self) -> str:
 return self.__nachname

 def get_ist_notfall(self) -> bool:
 return self.__ist_notfall

class Warteschlange:

 def __init__(self):
 self.__feld: list[Element] = []

 def ist_leer(self) -> bool:
 return self.__feld == []

 def einfügen(self, nachname: str, vorname: str, ist_notfall: bool):
 self.__feld.append(Element(nachname, vorname, ist_notfall))

 def erstes_element(self) -> Element:
 if self.__feld:
 return self.__feld[0]
 return None

 def erstes_löschen(self):
 if self.__feld:
 self.__feld.pop(0)

Feld ist zentraler Inhalt der Aufgabe
Die Methoden einfügen_mit_notfall(…) und sortiere_nach_nachnamen() werden ohne Zuhilfenahme von
integrierten Python-Methoden implementiert.

 def einfügen_mit_notfall(self, nachname: str, vorname: str,
 ist_notfall: bool):
 if not ist_notfall:
 self.einfügen(nachname, vorname, ist_notfall)
 else:
 i: int = len(self.__feld)
 while i > 0 and not self.__feld[i-1].get_ist_notfall():
 i = i - 1
 self.__feld.insert(i, Element(nachname, vorname, ist_notfall))

 def sortiere_nach_nachnamen(self):
 for i in range(len(self.__feld), 0, -1):
 for j in range(i-1):
 if self.__feld[j].get_nachname() >
 self.__feld[j+1].get_nachname():
 self.__feld[j], self.__feld[j+1] = self.__feld[j+1],
 self.__feld[j]

	Bezeichner
	Datenkapselung, Sichtbarkeit und get-/set-Methoden
	Sortieralgorithmen
	List Comprehensions

