Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

Vorbemerkung

Ab dem Jahr 2026 wird im hessischen Landesabitur eine Pflichtaufgabe zum Halbjahresthema
'Algorithmik und objektorientierte Programmierung' in den Programmiersprachen Python und Java
angeboten. Die Auswahl der Programmiersprache erfolgt im Rahmen der durch Erlass vorgegebenen
Moglichkeiten durch die Fachkonferenz. Die Programmiersprache dient als Werkzeug und steht nicht im
Mittelpunkt des Unterrichts.

Die Umsetzung der Inhalte des KCGOs zu den Halbjahresthemen 'Einfiihrung in die Informatik' und
'Algorithmik und objektorientierte Programmierung' wird im Folgenden erldutert. Dieses Dokument und
die Beispielaufgaben werden auch auf dem hessischen Bildungsserver ggf. aktualisiert und erweitert zu
finden sein.

Bezeichner

In Python verwenden wir die iiblichen Namenskonventionen?.
e Klassenbezeichner beginnen mit einem GrofRbuchstaben und verwenden das CamelCase-Format.

e Module, Methoden und Variablen beginnen mit einem Kleinbuchstaben, wobei einzelne Worter
durch Unterstriche getrennt werden.

from knoten import Knoten
class BinBaum:

def ip von domain (self):
pass

Hinweis: from knoten import Knoten importiert aus dem Modul knoten die Klasse Knoten. Auf
den Import ganzer Module soll verzichtet werden.

Bei Quellcode in Aufgaben des Landesabiturs werden wir in den meisten Fallen import Statements nicht
explizit angeben.

Datenkapselung, Sichtbarkeit und get-/set-Methoden

Datenkapselung ist ein zentrales Konzept der objektorientierten Programmierung, auch in Python. Die
Sichtbarkeit von Attributen bestimmt, ob auf sie von auRerhalb der Klasse zugegriffen werden kann. Wir
verwenden die folgenden Konventionen, um das Geheimnisprinzip zu wahren:

e Private Attribute und Methoden: Prafix ' '
e Geschutzte Attribute und Methoden: Prafix '

Der Zugriff erfolgt liber get- und set-Methoden, wahrend die Nutzung von Properties im Landesabitur
nicht vorgesehen ist.

1 PEP 8 — Style Guide for Python Code
Seite 1von 7

Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

Typinformationen

Python verwendet dynamische Typisierung, daher finden keine expliziten Variablendeklarationen statt.

Der Datentyp ergibt sich aus der Initialisierung durch eine Wertzuweisung. Fir UML-Diagramme und

Quellcodedarstellungen nutzen wir Typinformationen (type hints) 2. Diese Typinformationen sind in

Python lediglich Hinweise und beeinflussen nicht das Verhalten der Laufzeitumgebung.

In Python kdnnen Typannotationen zu einem Fehler flihren, wenn sie sich auf Typen beziehen, die zum

Zeitpunkt ihrer Definition noch nicht bekannt sind. Dies ist besonders problematisch bei

selbstreferenzierenden Klassen oder Klassen, die sich gegenseitig referenzieren. In der folgenden

Beispielaufgabe befindet sich die selbstreferenzierende Klasse Knoten, die zwei Attribute vom Typ Knoten

enthalt. Die Verwendung von from __future__ import annotations |6st dieses Problem, indem alle

Typannotationen als Zeichenketten behandelt werden, die erst zur Laufzeit aufgelost werden.

Auch dieses import Statement werden wir in Aufgaben des Landesabiturs nicht explizit angeben. Auch in

Losungen der Schiilerinnen und Schiiler wird dies nicht verlangt werden.

Beispielaufgabe
Uberfiihren Sie die beiden Klassen in ein UML-Klassendiagramm.

Klasse BinBaum

from knoten import Knoten

class BinBaum:

def init (self):
self. wurzel: Knoten = None

def ip von domain(self, domain name: str) -> str:
in Aufgabe 3 zu implementieren

def ip erfragen(self, domain name: str) -> str:

hier muss ein ibergeordneter DNS-Server angefragt werden
die Methode soll als implementiert angenommen werden

Klasse Knoten

from future import annotations

class Knoten:

def init (self, name: str, ip: str):
self. name: str = name
self. 1ip: str = ip
self. links: Knoten = None
self. rechts: Knoten = None

def get name (self) -> str:
return self. name

def get ip(self) -> str:

2 Seit Version 3.6 sind die Typhinweise in Python méglich. Selbst Pythons Griindervater Guido van Rossum

unterstitzt das Vorgehen mit dem Type-Checker-Projekt mypy.

Seite 2 von 7

Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

return self. ip

def get links(self) -> Knoten:

return self. links

def set links(self, links: Knoten):

self. links = links

def get rechts(self) -> Knoten:

return self. rechts

def set rechts(self, rechts: Knoten):

self. rechts = rechts
Losung:
Knoten
- name: String
- ip: String
BinBaum - links: Knoten

wurzel: Knoten

rechts: Knoten

- _init_()
+ ip_von_domain(): String
+ ip_erfragen(ein_domain_name: String): String

- _init__(name: String, ip: String)
+ get_name(): String

+ get_ip(): String

+ get_links(): Knoten

+ set_links(links: Knoten)

+ set_rechts(rechts: Knoten)

+ get_rechts(): Knoten

Typinformationen erleichtern auch die Analyse von Quellcode, da hierdurch die Bedeutung der Variablen
verdeutlicht wird. Wir werden daher im Landesabitur in den Aufgabenstellungen und Losungen stets
Typinformationen angeben.

Beispielaufgabe:

Analysieren Sie die Methode ausgeben(...) aus dem Material.

Die Methode ausgeben(...) der Klasse Arzneiverwaltung

01 def ausgeben(self, arzneiname: str) -> bool:
02 for arznei in self. arzneien:

03 if arznei.get name() == arzneiname:
04 if arznei.get anzahl() > O:

05 arznei.andere anzahl um(-1)
06 return True

07 else:

08 return False

09 return False

Seite 3von7

Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

Sortieralgorithmen

Sortieralgorithmen sind in vielen Anwendungen erforderlich. Die Lernenden sollen einfache
Sortieralgorithmen entwickeln und diese beschreiben, darstellen und implementieren. Die vordefinierte
Funktion sort() auf Listen soll dabei nicht verwendet werden. Der Dreieckstausch kann durch die in
Python Ubliche direkte Vertauschung der Listeninhalte ersetzt werden.

Beispielaufgabe:

Implementieren Sie die Methode sortiere arzneien() der Klasse Arzneiverwaltung, die die Arzneien
alphabetisch nach Arzneinamen sortiert.
Hinweis: Die Methoden sort() und sorted() fiir Listen sollen in dieser Aufgabe nicht verwendet werden.

Losung:

def sortiere arzneien(self):
for i in range(len(self. arzneien) - 1):
min = 1
for j in range(i + 1, len(self. arzneien)):
if (self. arzneien[j].get name()
< self. arzneien[min].get name()):
min = j
(self. arzneien[i], self. arzneien[min]) \
= (self. arzneien[min], self. arzneien[i])

List Comprehensions

In Anbetracht der Lesbarkeit und Verstandlichkeit des Codes praferieren wir traditionelle
Schleifenkonstrukte gegenliber List Comprehensions. Letztere, obwohl sie fiir ihre Kompaktheit und
Eleganz bekannt sind, kénnen bei komplexer oder spezifischer Logik, die Codeverstandlichkeit
beeintrachtigen. Daher wird empfohlen, Schleifenkonstrukte direkt zu verwenden, um die Klarheit und
Nachvollziehbarkeit des Codes zu gewahrleisten.

Beispiel:
class Person:
def init (self, name: str, alter: str):
self. name = name
self. alter = alter
personen = [Person("Ada", 25), Person("Bernd", 30), Person("Charlie", 20)]

Mit List Comprehensions
namen unter 30 = [person. name for person in personen if person. alter < 30]

Ohne List Comprehensions
namen_unter 30 = []
for person in personen:
if person. alter < 30:
namen_unter 30.append(person. name)

Seite 4 von 7

Hinweise und

Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

weiteres Beispiel:

def counting sort(self):

anzahl abstéande: int = 7
#so:
c: list[int] = [] #c hat so viele Eintrage,
#wie es der maximale Abstand im Gitter ermdglicht +1 (6 + 1).
for i in range(anzahl abstande):
c.append(0)
#und nicht so:
c = [0 for i in range(anzahl abstande)]
#so:
b: list[Auto] = [] #Diese Liste wird sortiert aufgebaut
for i in range(len(self. verfigbare autos)):
b.append (None)
#und nicht so:
b = [None for i in range(len(self. verfiugbare autos))]
for i in range (len(self. verfligbare autos)):
abstand: int = self. verfligbare autos[i].bestimme abstand()
cl[abstand] = clabstand] + 1
for i in range (anzahl abstande - 1):
c[i] = c[i] + c[i-1]
for i in range (len(self. verfigbare autos)):
abstand: int = self. verfiigbare autos[i].bestimme abstand()
b[c[abstand]-1] = self. verflugbare autos[i]
cl[abstand] = clabstand]-1

self. verfligbare autos

b

Slicing

Python bietet slicing als Operation auf Listen an. Slicing ermoglicht es haufig, Algorithmen sehr effizient

zu implementieren, kann dabei aber auch die Lesbarkeit des Quellcodes verringern. Aus diesem Grund

verzichten wir vollstandig auf Slicing und gehen wie oben unter List Comprehensions beschrieben vor.

Schiilerinnen und Schiiler diirfen bei Implementierungen in Abituraufgaben Slicing verwenden.

Beispiel:
class Senso:

def in

self.
self.
self.
self.
self.

Mit Slicing
def spie
for

it (self):

__farbfolge: list[Licht] = []
__farbfolge.append(Licht ("blau"))
___farbfolge.append (Licht ("gelb"))
___farbfolge.append (Licht ("rot"))
__farbfolge.append(Licht ("gelb"))
len(self):

runde in range(len(self. farbfolge)):

print ("Runde ", runde + 1)
for licht in self. farbfolge[:runde+l]:
licht.aufblinken ()

Seite 5von 7

Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

Ohne Slicing
def spielen(self):
for runde in range(len(self. farbfolge)):
print ("Runde ", runde + 1)
for i in range(runde + 1):
self. farbfolge[i].aufblinken ()

Lesbarkeit von Quellcode

Insgesamt werden wir eine bessere Lesbarkeit des Quellcodes gegenliber dessen Kiirze oder Eleganz
vorziehen. Dies gilt insbesondere, wenn ein Quellcode analysiert werden soll.

Es steht Lehrerinnen und Lehrern jedoch hierbei frei, in ihren Kursen den Schwerpunkt anders zu setzen.
Schiilerinnen und Schiiler sind bei Implementierungen in Abituraufgaben nicht verpflichtet diesen
Grundsatz zu befolgen. Die Priorisierung der Lesbarkeit soll lediglich als Empfehlung dienen, um das
Verstandnis und die Nachvollziehbarkeit von Quellcode zu férdern.

Beispiel:

Kurz
def erstes element (self) -> Element:
return self. feld[O0]

Besser lesbar
def erstes element (self) -> Element:
if self. feld:
return self. feld[O0]
else:
return None

Listen in Python

In Python existiert nicht direkt die Datenstruktur Feld (Array), wie sie in anderen Programmiersprachen
wie Java oder Delphi vorkommt. Stattdessen wird ein List-Objekt verwendet, das Methoden fiir
grundlegende Operationen bereitstellt. Wahrend in Python ein indexbasierter Zugriff auf List-Objekte
moglich ist, fordert die VergréRBerung eines Feldes nicht das Neuerzeugen und Umkopieren der bereits
vorhandenen Inhalte, wie es in Java notig ist. Stattdessen werden in Python integrierte Methoden wie
append, pop, ... verwendet, um die Inhalte eines Feldes zu manipulieren.

Da die Datenstruktur Feld eine fundamentale in der Informatik ist, soll diese weiterhin auch im Unterricht
mit Python thematisiert werden. Fir die Aufgaben im Landesabitur hat dies folgende Konsequenzen:

Soll die Datenstruktur im Mittelpunkt stehen, wie beispielsweise. im Themenfeld der Sortieralgorithmen,
wird in der Regel auf einem gegebenen Feld indexbasiert operiert. Wenn die Datenstruktur Feld hingegen
nur zum Speichern von Inhalten verwendet werden, wird dies in Python mithilfe der zur Verfligung
stehenden Methoden implementiert.

Seite 6 von 7

Hinweise und Beispiele zur Einfithrung von Python im hessischen Landesabitur 2026

Beispiel:

Feld steht als Datenstruktur nicht im Vordergrund
Die Methoden einfiigen() und erstes_I6schen() werden mit Hilfe der Methoden append() und pop()
implementiert.

class Element:

def init (self, nachname: str, vorname: str, ist notfall: bool):
self. nachname: str = nachname
self. vorname: str = vorname
self. 1ist notfall: bool = ist notfall

def get nachname (self) -> str:
return self. nachname

def get ist notfall(self) -> bool:
return self. ist notfall

class Warteschlange:

def init (self):
self. feld: list[Element] = []

def ist leer (self) -> bool:
return self. feld == []

def einfigen(self, nachname: str, vorname: str, ist notfall: bool):
self. feld.append(Element (nachname, vorname, ist notfall))

def erstes element (self) -> Element:
if self. feld:
return self. feld[O0]
return None

def erstes loschen (self):
if self. feld:
self. feld.pop(0)

Feld ist zentraler Inhalt der Aufgabe
Die Methoden einfiigen_mit_notfall(...) und sortiere_nach_nachnamen() werden ohne Zuhilfenahme von
integrierten Python-Methoden implementiert.

def einfigen mit notfall (self, nachname: str, vorname: str,

ist notfall: bool):

if not ist notfall:
self.einfigen (nachname, vorname, ist notfall)

else:
i: int = len(self. feld)
while i > 0 and not self. feld[i-1].get ist notfall():

i=1i-1

self. feld.insert (i, Element (nachname, vorname, ist notfall))

def sortiere nach nachnamen (self) :
for i in range(len(self. feld), 0, -1):
for j in range(i-1):
if self. feld[Jj].get nachname() >
self. feld[j+1].get nachname () :
self. feld[j], self. feld[j+1] = self. feld[j+1],
self. feld[3]]

Seite 7von 7

	Bezeichner
	Datenkapselung, Sichtbarkeit und get-/set-Methoden
	Sortieralgorithmen
	List Comprehensions

